236719 Computational Geometry – Tutorial 4

Fractional Cascading and Range Trees

Tomer Adar

lllustrations based on slides by Amani Shhadi, Yufei Zheng - 郑羽霏

What We See Today

- How to search the successor of x in k sorted lists in $O(\log n + k)$.
- How to do it for just t of these k lists, in $O(\log n + t)$.
 - Well, not exactly, only for "nice" subsets, and for some constant parameter d.
- A 2D range query data structure with $O(\log n)$ query time.
 - Improvement of the easier, $O(\log^2 n)$ solution.
- To print or store the result points, not only count them, we add O(k) time where k is the number of output points.

Terminology

- All lists today are ordered, even if not specified.
- **Successor**: the lowest item in list A that is greater than x.
 - $(x, A) \rightarrow \min\{y \in A | y > x\}.$
 - c++: upper_bound(begin, end, x) -> successor's iterator (or end if not found).
 - If exists, must be greater than x.
- Lower Bound: like successor, but can be equal to x.
 - $(x, A) \rightarrow \min\{y \in A | y \ge x\}.$
 - c++: lower_bound(begin, end, x).
- **Predecessor**: like successor, but the other way (maximum before x).

Repeated Search Problem

- We have k sorted lists, n elements each.
- Query: find the successor of x in **all** lists.

- L_1 672654 L_2 2212960 L_3 9133145
- Trivial solution: binary search in every list independently.
 - $O(k \log n)$ query time \otimes
 - No extra space still O(kn) \odot
- Can we do better?

X=20

Repeated Search Problem

- We have k sorted lists, n elements each.
- Query: find the successor of x in **all** lists.
- Other solution: merge all lists, store k lower-bounds per entry.
 - $O(\log n + k)$ query time \bigcirc
 - But $O(k^2n)$ space \otimes
- Can we have **both** $O(\log n + k)$ query time and O(kn) space?

- Two lists, single x.
- We want to binary search once and then do O(1) extra work.
- Take the first list.
- Take every-other-item in the second list.
- Merge them. Keep the second list.
- For each item in the merged list store its neighbors in each list:
 - Predecessor the maximum-of-lower.
 - Lower Bound the minimum-of-higher-or-equals.

- Two lists, single x.
- We want to binary search once and then do O(1) extra work.
- Take the first list.
- Take every-other-item in the second list.
- Merge them. Keep the second list.
- For each item in the merged list store its neighbors in each list:
 - Predecessor the maximum-of-lower.
 - Lower Bound the minimum-of-higher-or-equals.

- Two lists, single x.
- We want to binary search once and then do O(1) extra work.
- Take the first list.
- Take every-other-item in the second list.
- Merge them. Keep the second list.
- For each item in the merged list store its neighbors in each list:
 - Predecessor the maximum-of-lower.
 - Lower Bound the minimum-of-higher-or-equals.

- Two lists, single x.
- We want to binary search once and then do O(1) extra work.
- Search successor of x in the combined list.
- If belongs to list 1:
 - Found for list #1

- 6
 7
 21
 26
 54
 60

 2
 21
 29
 60
- For list #2: test both predecessor and lower bound, choose the better.
- If belongs to list 2:
 - The same.

- What if we had 3 lists?
 - Apply the 2-case on lists #2, #3. Call it list 2-3.
 - Apply it again for list 1 and the merged list. Call it list 1-(2-3)
 - Single binary search in list 1-(2-3).
 - We know how to find the successor of x in list 1 and also in list 2-3.
 - No need to search again! From list 2-3 we find the successor in list 2 and list 3.
 - The search in whole-list is $O(\log n)$, because list 1-(2-3) has at most 3n items.
 - Then just O(1) work for each "layer", which we have two of.
- Holds for $k \ge 2$: binary search $O(\log kn)$, pointer work O(k).

• Space:
$$(n)_{\text{list } 3} + \left(\frac{3}{2}n\right)_{\text{list } 2-3} + \left(\frac{7}{4}n\right)_{\text{list } 1-(2-3)} \le 6n \text{ items.}$$

• What if we had 3 lists?

• What if we had 3 lists?

• What if we had 3 lists?

Fractional Cascading – The k-case

- How many items do we store for k lists?
- The last list has n items, which is less than 2n.
- In every step we merge:
 - A brand-new list with *n* items and
 - Every-other-item of a list with less than 2n items.
- Also the merged list has less 2n items!
- Space is O(kn): we store k union-lists, each has less than 2n items.
- Query time is $O(\log n + k)$:
 - $O(\log n)$ for binary search in top union, which has less than 2n items.
 - O(k) a constant work to find the successors for every list.

Fractional Cascading – The General Case

- We have a directed, acyclic graph.
- Each vertex store a sorted list.
- Each edge's label is a segment [a, b].
- The outgoing degree of a vertex is bounded by some constant deg.
- Query: given x, walk along the edges whose label contain x. Find the successor of x in every list on the walked path.

Fractional Cascading – The General Case

- Basically the same solution.
- The k-list case was like a line tree, d = 1.
- Instead of 1/2, we take every 1/d+1 item in each list.
- And store d + 1 pointers "for the holes", per item.
- Guaranteed: every $\frac{1}{d+1}$ -union list has at most 2n items.
- Query complexity for *t*-path: $O(\log n + t \log d)$
 - After one search, every step require binary search in the (d + 1)-pointer list.

Range Queries

- In we have *n* points on a line (1D).
- How many points are there in a given segment [*a*, *b*]?
- What if the points are *k*-dimensional?

The 1D Case

- Balanced binary search tree
- Data only in leaves
- Internal node stores the maximum of its left subtree.
- Internal node also stores its subtree size.
- Query "count in [a,b]":
 - Search a $O(\log n)$
 - Search b $O(\log n)$
 - Sum the sizes of $O(\log n)$ subtrees in the path.

The dD case

The dD case

- Range tree of range trees
- Sorted by a_1 .
- Internal node stores a (d-1)-range-tree of the points in its subtree
 - without the first coordinate
- To search $[a_1, \dots, a_k] \times [b_1, \dots, b_k]$:
 - Find all $O(\log n)$ subtrees for which: $a_1 \le x_1 \le b_1$ holds for all points.
 - For each one, do a recursive query $[a_2, ..., a_k] \times [b_2, ..., b_k]$.
 - Sum the results.
- Total Time: $O(\log^d n)$, one log per dimension.

Can Do It Better!

- It is possible to do that in $O(\log^{d-1} n)$ time for d > 1.
- Do you have any idea?

Recall the first slide!

- The origin of the *d*-power is **repeated searches**.
- Every subtree is a single-rooted, directed acyclic graph.
- Can consolidate the searches using Fractional Cascading.
- Application: **2D Range Trees with** $O(\log n)$ **query time**.

Repeated Searches

- In the 2D range tree
- We search the same $[a_2, b_2]$ range for $O(\log n)$ subtrees.
- It is exactly the use case of fractional cascading! (deg \leq 4, why?)
- Application with:
 - First search in the rooted tree all points sorted by y. $O(\log n)$.
 - Follow the successors along the way O(1) per subtree, $O(\log n)$ for all.
- Once got an $O(\log n)$ 2D range-tree, we use it as "bottom layer"
 - Still every dimension adds a log.
 - But we got the first two dimensions at the cost of one!

Range Trees

- Once got an $O(\log n)$ query time for the 2D case:
 - Make the dD range tree as before (tree of (d 1)D trees).
 - Every dimension adds a log *n* factor.
 - The base case is d = 2, whose query time is $O(\log n)$.
 - Giving $O(\log^{d-1} n)$ query time for $d \ge 2$.