236719 Computational Geometry – Tutorial 4

Fractional Cascading and Range Trees

Tomer Adar

Illustrations based on slides by Amani Shhadi, Yufei Zheng - 郑羽霏

What We See Today

- How to search the successor of x in k sorted lists in $O(\log n + k)$.
- How to do it for just t of these k lists, in $O(\log n + t)$.
	- Well, not exactly, only for "nice" subsets, and for some constant parameter d .
- A 2D range query data structure with $O(\log n)$ query time.
	- Improvement of the easier, $O(\log^2 n)$ solution.
- To print or store the result points, not only count them, we add $O(k)$ time where k is the number of output points.

Terminology

- All lists today are ordered, even if not specified.
- **Successor**: the lowest item in list A that is greater than x.
	- $(x, A) \rightarrow min\{y \in A | y > x\}.$
	- c++: upper_bound(begin, end, x) -> successor's iterator (or end if not found).
	- If exists, must be greater than x.
- **Lower Bound**: like successor, but can be equal to x.
	- $(x, A) \rightarrow min\{y \in A | y \ge x\}.$
	- c++: lower_bound(begin, end, x).
- **Predecessor**: like successor, but the other way (maximum before x).

Repeated Search Problem

- We have k sorted lists, n elements each.
- Query: find the successor of x in all lists.
- L_1 54 6 26 L_2 60 29 45 13 9 L_3
- Trivial solution: binary search in every list independently.
	- $O(k \log n)$ query time \odot
	- No extra space still $O(kn)$ \odot
- Can we do better?

X=20

Repeated Search Problem

- We have k sorted lists, n elements each.
- Query: find the successor of x in all lists.
- Other solution: merge all lists, store k lower-bounds per entry.
	- $O(\log n + k)$ query time \odot
	- But $O(k^2n)$ space \odot
- Can we have **both** $O(\log n + k)$ query time and $O(kn)$ space?

$$
X=20
$$

- Two lists, single x .
- We want to binary search once and then do $O(1)$ extra work.
- Take the first list.
- Take every-other-item in the second list.
- Merge them. Keep the second list.
- For each item in the merged list store its neighbors in each list:
	- Predecessor the maximum-of-lower.
	- Lower Bound the minimum-of-higher-or-equals.

- Two lists, single x .
- We want to binary search once and then do $O(1)$ extra work.
- Take the first list.
- Take every-other-item in the second list.
- Merge them. Keep the second list.
- For each item in the merged list store its neighbors in each list:
	- Predecessor the maximum-of-lower.
	- Lower Bound the minimum-of-higher-or-equals.

- Two lists, single x .
- We want to binary search once and then do $O(1)$ extra work.
- Take the first list.
- Take every-other-item in the second list.
- Merge them. Keep the second list.
- For each item in the merged list store its neighbors in each list:
	- Predecessor the maximum-of-lower.
	- Lower Bound the minimum-of-higher-or-equals.

- Two lists, single x .
- We want to binary search once and then do $O(1)$ extra work.
- Search successor of x in the combined list.
- If belongs to list 1:
	- Found for list #1
- 6 7 21 26 54 60 2 21 29 60
- For list #2: test both predecessor and lower bound, choose the better.
- If belongs to list 2:
	- The same.

- What if we had 3 lists?
	- Apply the 2-case on lists #2, #3. Call it list 2-3.
	- Apply it again for list 1 and the merged list. Call it list 1-(2-3)
	- Single binary search in list 1-(2-3).
	- We know how to find the successor of x in list 1 and also in list 2-3.
	- No need to search again! From list 2-3 we find the successor in list 2 and list 3.
	- The search in whole-list is $O(\log n)$, because list 1-(2-3) has at most 3*n* items.
	- Then just $0(1)$ work for each "layer", which we have two of.
- Holds for $k \geq 2$: binary search $O(\log kn)$, pointer work $O(k)$.

• Space:
$$
(n)_{\text{list }3} + \left(\frac{3}{2}n\right)_{\text{list }2-3} + \left(\frac{7}{4}n\right)_{\text{list }1-(2-3)} \le 6n
$$
 items.

• What if we had 3 lists?

• What if we had 3 lists?

• What if we had 3 lists?

Fractional Cascading $-$ The *k*-case

- How many items do we store for k lists?
- The last list has n items, which is less than $2n$.
- In every step we merge:
	- A brand-new list with n items and
	- **Every-other-item** of a list with less than $2n$ items.
- Also the merged list has less $2n$ items!
- **Space is** $O(kn)$ **:** we store k union-lists, each has less than $2n$ items.
- Query time is $O(\log n + k)$:
	- $O(\log n)$ for binary search in top union, which has less than 2n items.
	- \bullet $O(k)$ a constant work to find the successors for every list.

Fractional Cascading – The General Case

- We have a directed, acyclic graph.
- Each vertex store a sorted list.
- Each edge's label is a segment $[a, b]$.
- The outgoing degree of a vertex is bounded by some constant deg.
- Query: given x, walk along the edges whose label contain x. Find the successor of x in every list on the walked path.

Fractional Cascading – The General Case

- Basically the same solution.
- The k-list case was like a line tree, $d = 1$.
- Instead of $\frac{1}{2}$, we take every $\frac{1}{2}$ σ_{d+1} item in each list.
- And store $d + 1$ pointers "for the holes", per item.
- Guaranteed: every $\frac{1}{d+1}$ $d+1$ -union list has at most $2n$ items.
- Query complexity for t-path: $O(\log n + t \log d)$
	- After one search, every step require binary search in the $(d + 1)$ -pointer list.

Range Queries

- In we have n points on a line (1D).
- How many points are there in a given segment $[a, b]$?
- What if the points are k -dimensional?

The 1D Case

- Balanced binary search tree
- Data only in leaves
- Internal node stores the maximum of its left subtree.
- Internal node also stores its subtree size.
- Query "count in [a,b]":
	- Search a $O(\log n)$
	- Search b $O(\log n)$
	- Sum the sizes of $O(\log n)$ subtrees in the path.

The dD case

The dD case

- Range tree of range trees
- Sorted by a_1 .
- Internal node stores a $(d-1)$ -range-tree of the points in its subtree
	- without the first coordinate
- To search $[a_1, ..., a_k] \times [b_1, ..., b_k]$:
	- Find all $O(\log n)$ subtrees for which: $a_1 \le x_1 \le b_1$ holds for all points.
	- For each one, do a recursive query $[a_2, ..., a_k] \times [b_2, ..., b_k]$.
	- Sum the results.
- Total Time: $O(\log^d n)$, one log per dimension.

Can Do It Better!

- It is possible to do that in $O(\log^{d-1} n)$ time for $d > 1$.
- Do you have any idea?

Recall the first slide!

- \bullet The origin of the d -power is **repeated searches**.
- Every subtree is a **single-rooted, directed acyclic graph**.
- Can consolidate the searches using **Fractional Cascading**.
- Application: 2D Range Trees with $O(\log n)$ query time.

Repeated Searches

- In the 2D range tree
- We search **the same** $[a_2, b_2]$ range for $O(\log n)$ subtrees.
- It is exactly the use case of fractional cascading! ($deg \leq 4$, why?)
- Application with:
	- First search in the rooted tree all points sorted by y. $O(\log n)$.
	- Follow the successors along the way $O(1)$ per subtree, $O(\log n)$ for all.
- Once got an $O(\log n)$ 2D range-tree, we use it as "bottom layer"
	- Still every dimension adds a log.
	- But we got the first two dimensions at the cost of one!

Range Trees

- Once got an $O(\log n)$ query time for the 2D case:
	- Make the dD range tree as before (tree of $(d 1)$ D trees).
	- Every dimension adds a $\log n$ factor.
	- The base case is $d = 2$, whose query time is $O(\log n)$.
	- Giving $O(\log^{d-1} n)$ query time for $d \geq 2$.