
Fractional Cascading and 
Range Trees

236719 Computational Geometry – Tutorial 4

Tomer Adar

Illustrations based on 

slides by Amani Shhadi,
Yufei Zheng - 郑羽霏



What We See Today

• How to search the successor of 𝑥 in 𝑘 sorted lists in 𝑂 log 𝑛 + 𝑘 .

• How to do it for just 𝑡 of these 𝑘 lists, in 𝑂 log 𝑛 + 𝑡 .
• Well, not exactly, only for “nice” subsets, and for some constant parameter 𝑑.

• A 2D range query data structure with 𝑂 log 𝑛 query time.
• Improvement of the easier, 𝑂 log2 𝑛 solution.

• To print or store the result points, not only count them, we add 𝑂 𝑘
time where 𝑘 is the number of output points.



Terminology

• All lists today are ordered, even if not specified.

• Successor: the lowest item in list 𝐴 that is greater than x.
• 𝑥, 𝐴 → min 𝑦 ∈ 𝐴 𝑦 > 𝑥 .

• c++: upper_bound(begin, end, x) -> successor’s iterator (or end if not found).

• If exists, must be greater than x.

• Lower Bound: like successor, but can be equal to x.
• 𝑥, 𝐴 → min 𝑦 ∈ 𝐴 𝑦 ≥ 𝑥 .

• c++: lower_bound(begin, end, x).

• Predecessor: like successor, but the other way (maximum before x).



Repeated Search Problem

• We have 𝑘 sorted lists, 𝑛 elements each.

• Query: find the successor of 𝑥 in all lists.

• Trivial solution: binary search in every list independently.
• 𝑂 𝑘 log 𝑛 query time 

• No extra space – still 𝑂 𝑘𝑛 ☺

• Can we do better?

X=20



Repeated Search Problem

• We have 𝑘 sorted lists, 𝑛 elements each.

• Query: find the successor of 𝑥 in all lists.

• Other solution: merge all lists, store 𝑘 lower-bounds per entry.
• 𝑂 log 𝑛 + 𝑘 query time ☺

• But 𝑂 𝑘2𝑛 space 

• Can we have both 𝑂 log 𝑛 + 𝑘 query time and 𝑂 𝑘𝑛 space?

X=20



Fractional Cascading – Simple Case

• Two lists, single 𝑥.

• We want to binary search once and then do 𝑂 1 extra work.

• Take the first list.

• Take every-other-item in the second list.

• Merge them. Keep the second list.

• For each item in the merged list store its neighbors in each list:
• Predecessor – the maximum-of-lower.

• Lower Bound – the minimum-of-higher-or-equals.

6 7 26 54

2 21 29 60



Fractional Cascading – Simple Case

• Two lists, single 𝑥.

• We want to binary search once and then do 𝑂 1 extra work.

• Take the first list.

• Take every-other-item in the second list.

• Merge them. Keep the second list.

• For each item in the merged list store its neighbors in each list:
• Predecessor – the maximum-of-lower.

• Lower Bound – the minimum-of-higher-or-equals.

6 7 21 26 54 60

2 21 29 60



Fractional Cascading – Simple Case

• Two lists, single 𝑥.

• We want to binary search once and then do 𝑂 1 extra work.

• Take the first list.

• Take every-other-item in the second list.

• Merge them. Keep the second list.

• For each item in the merged list store its neighbors in each list:
• Predecessor – the maximum-of-lower.

• Lower Bound – the minimum-of-higher-or-equals.

6 7 21 26 54 60

2 21 29 60



Fractional Cascading – Simple Case

• Two lists, single 𝑥.

• We want to binary search once and then do 𝑂 1 extra work.

• Search successor of 𝑥 in the combined list.

• If belongs to list 1:
• Found for list #1

• For list #2: test both predecessor and lower bound, choose the better.

• If belongs to list 2:
• The same.

6 7 21 26 54 60

2 21 29 60



Fractional Cascading - Another Step

• What if we had 3 lists?
• Apply the 2-case on lists #2, #3. Call it list 2-3.
• Apply it again for list 1 and the merged list. Call it list 1-(2-3)
• Single binary search in list 1-(2-3).
• We know how to find the successor of 𝑥 in list 1 and also in list 2-3.
• No need to search again! From list 2-3 we find the successor in list 2 and list 3.
• The search in whole-list is 𝑂 log 𝑛 , because list 1-(2-3) has at most 3𝑛 items.
• Then just 𝑂 1 work for each “layer”, which we have two of.

• Holds for 𝑘 ≥ 2: binary search - 𝑂 log 𝑘𝑛 , pointer work - 𝑂 𝑘 .

• Space: 𝑛 list 3 +
3

2
𝑛
list 2−3

+
7

4
𝑛
list 1−(2−3)

≤ 6𝑛 items.



Fractional Cascading - Another Step

• What if we had 3 lists?

6 7 26 54

2 21 29 60

9 13 31 45



Fractional Cascading - Another Step

• What if we had 3 lists?

6 7 26 54

2 29

9 13 31 45

13 21 45 60



Fractional Cascading - Another Step

• What if we had 3 lists?

6 26

2 29

9 13 31 45

13 21 45 60

13 7 29 54 60



Fractional Cascading – The 𝑘-case

• How many items do we store for 𝑘 lists?

• The last list has 𝑛 items, which is less than 2𝑛.

• In every step we merge:
• A brand-new list with 𝑛 items and
• Every-other-item of a list with less than 2𝑛 items.

• Also the merged list has less 2𝑛 items!

• Space is 𝑶 𝒌𝒏 : we store 𝑘 union-lists, each has less than 2𝑛 items.

• Query time is 𝑶 𝐥𝐨𝐠𝒏 + 𝒌 :
• 𝑂 log 𝑛 - for binary search in top union, which has less than 2𝑛 items.
• 𝑂 𝑘 - a constant work to find the successors for every list.



Fractional Cascading – The General Case

• We have a directed, acyclic graph.

• Each vertex store a sorted list.

• Each edge’s label is a segment 𝑎, 𝑏 .

• The outgoing degree of a vertex is bounded by some constant deg.

• Query: given 𝑥, walk along the edges whose label contain 𝑥. Find the 
successor of 𝑥 in every list on the walked path.



Fractional Cascading – The General Case

• Basically the same solution.

• The 𝑘-list case was like a line tree, 𝑑 = 1.

• Instead of Τ1 2, we take every Τ1 𝑑+1 item in each list.

• And store 𝑑 + 1 pointers “for the holes”, per item.

• Guaranteed: every 
1

𝑑+1
-union list has at most 2𝑛 items.

• Query complexity for 𝑡-path: 𝑂 log 𝑛 + 𝑡 log 𝑑
• After one search, every step require binary search in the 𝑑 + 1 -pointer list.



Range Queries

• In we have 𝑛 points on a line (1D).

• How many points are there in a given segment 𝑎, 𝑏 ?

• What if the points are 𝑘-dimensional?



The 1D Case

• Balanced binary search tree

• Data only in leaves

• Internal node stores the maximum of its left subtree.

• Internal node also stores its subtree size.

• Query “count in [a,b]”:
• Search a - 𝑂 log 𝑛

• Search b - 𝑂 log 𝑛

• Sum the sizes of 𝑂 log 𝑛 subtrees in the path.



The dD case

𝒂𝟏 𝒃𝟏

𝒂𝟐

𝒃𝟐

Query([𝒂𝟏, 𝒃𝟏] × [𝒂𝟐, 𝒃𝟐])

- 𝑥 Query([𝑎1, 𝑏1])
- 𝑦 Query([𝑎2, 𝑏2])



The dD case

• Range tree of range trees

• Sorted by 𝑎1.

• Internal node stores a 𝑑 − 1 -range-tree of
the points in its subtree
• without the first coordinate

• To search 𝑎1, … , 𝑎𝑘 × 𝑏1, … , 𝑏𝑘 :
• Find all 𝑂 log 𝑛 subtrees for which: 𝑎1 ≤ 𝑥1 ≤ 𝑏1 holds for all points.

• For each one, do a recursive query 𝑎2, … , 𝑎𝑘 × 𝑏2, … , 𝑏𝑘 .

• Sum the results.

• Total Time: 𝑂 log𝑑 𝑛 , one log per dimension.

Same Points
Sorted by y



Can Do It Better!

• It is possible to do that in 𝑂 log𝑑−1 𝑛 time for 𝑑 > 1.

• Do you have any idea?



Recall the first slide!

• The origin of the 𝑑-power is repeated searches.

• Every subtree is a single-rooted, directed acyclic graph.

• Can consolidate the searches using Fractional Cascading.

• Application: 2D Range Trees with 𝑶 𝐥𝐨𝐠𝒏 query time.



Repeated Searches

• In the 2D range tree

• We search the same 𝑎2, 𝑏2 range for 𝑂 log 𝑛 subtrees.

• It is exactly the use case of fractional cascading! (deg ≤ 4, why?)

• Application with:
• First search in the rooted tree – all points sorted by 𝑦. 𝑂 log 𝑛 .

• Follow the successors along the way - 𝑂 1 per subtree, 𝑂 log 𝑛 for all.

• Once got an 𝑂 log 𝑛 2D range-tree, we use it as “bottom layer”
• Still every dimension adds a log.

• But we got the first two dimensions at the cost of one!



Range Trees

• Once got an 𝑂 log 𝑛 query time for the 2D case:
• Make the 𝑑D range tree as before (tree of 𝑑 − 1 D trees).

• Every dimension adds a log 𝑛 factor.

• The base case is 𝑑 = 2, whose query time is 𝑂 log 𝑛 .

• Giving 𝑂 log𝑑−1 𝑛 query time for 𝑑 ≥ 2.


